Breaking News
Comments
Newest First | Oldest First | Threaded View
<<   <   Page 2 / 2
Bert22306
User Rank
Author
Re: Backhaul limitation
Bert22306   7/7/2014 5:19:06 PM
NO RATINGS
I don't know if "shame" is the right term. I assume you're talking about the service providers here, who have been steadily updating their core networks and last mile connections, over the years. It's labor-intensive, and therefore expensive work. But for example, DOCSIS 3.1 theroretically can deliver 10 Gb/s downstream and 1 Gb/s upstream, and it was approved as a standard earlier this year.

I am curious to see 802.11ac in the real world. I have 802.11n at home, and find that in the 5 GHz band, the bit rate will vary from the high 100 Mb/s or low 200 Mb/s ranges, to the AP's maximum of 270 Mb/s. My assumption is that the 2 X 2 or 4 X 4 MIMO used is not all that dependable, maybe even affected by people walking around the house. A system that depends on 8 X 8 MIMO will most likely exhibit this same behavior.

LarryM99
User Rank
Author
Backhaul limitation
LarryM99   7/7/2014 4:33:16 PM
NO RATINGS
I have been tracking 802.11ac for a while now, and have even upgraded my home router to the standard. I haven't run real-world throughput tests on it, but it seems like it is getting close to the Gigabit Ethernet speed that is used as the backhaul for it in most cases. This, if nothing else, would seem to be a real limitation on further development (not to mention a little embarassing). Even some lucky cable customers with 1 Gb fiber could potentially be in the situation of having that be the bandwidth limitation.

Do you think that 802.11ac could shame the wired Ethernet guys into upping their game?

Larry M.

<<   <   Page 2 / 2


Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Radio
NEXT UPCOMING BROADCAST

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Are the design challenges the same as with embedded systems, but with a little developer- and IT-skills added in? What do engineers need to know? Rick Merritt talks with two experts about the tools and best options for designing IoT devices in 2016. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.
Like Us on Facebook
Special Video Section
LED lighting is an important feature in today’s and future ...
05:27
The LT8602 has two high voltage buck regulators with an ...
05:18
Silego Technology’s highly versatile Mixed-signal GreenPAK ...
The quality and reliability of Mill-Max's two-piece ...
01:34
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...
See the Virtex® UltraScale+™ FPGA with 32.75G backplane ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
10:35
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...
The LTC®2348-18 is an 18-bit, low noise 8-channel ...
The LT®3042 is a high performance low dropout linear ...