Breaking News
Newest First | Oldest First | Threaded View
<<   <   Page 5 / 5
Bob Snyder
User Rank
Re: Gravitational model
Bob Snyder   8/11/2014 10:01:52 PM
"Yet, as most engineers and scientists know, getting consistent, accurate results in any test-and-measurement challenge to better than three or four significant figures is rarely easy. Every added significant figure means ever-more-subtle sources of error must be uncovered, understood, calibrated out, or compensated for in the fixture and equipment."

How many significant figures are currently possible in state-of-the-art scientific research?

Annual global mean sea level rise is currently estimated to be 2.28 mm/yr. The newest and most precise satellites having this ability, Jason-1 and Jason-2, orbit at a mean altitude of 1336 km (1.336 billion mm). Detecting a 1 mm change in sea level would require a measurement uncertainty of less than one part per billion.

Many factors can affect a satellite's position: Mountain ranges have more mass, and therefore more gravity, than prairies. The moon and sun have strong gravitational attraction. The solar wind is variable and turbulent. When the satellites' orbits begin to decay, booster rockets are fired to restore their altitude. All of this has to be modelled and corrected for.

A RADAR altimeter is used to measure sea surface height relative to the satellite. Two RADAR frequencies are used so that the effects of atmospheric moiisture can be accounted for. Higher ocean waves result in earlier arrival of initial RADAR reflections. A correction can be made by looking at all reflected energy, not just the earliest, but this correction depends on assumptions about the shape of sea surface waves.

The satellites complete one orbital cycle every 10 days, and they are separated by 5 days, so the sea surface height is measured only once every 5 days at each location. According to the Nyquist sampling theorem, that means any sea surface waves having a period less than 10 days will undergo temporal aliasing because the sampling rate is too low to capture the true waveform.

NASA goes to great lengths to make the satellite altimetry measurements as precise as possible. For example, the GRACE satellite mission maps the earth's gravity field, and this data can then be used to improve the real-world models used by the Jason missions.

My question is:  Can I really believe the claims of one part per billion accuracy in the global mean sea level data? My gut is saying 'no', but I was wondering if someone with experience in this area could shed any light.



User Rank
Solar Output
cookiejar   8/11/2014 3:08:34 PM
Another "constant" that is very difficult to measure with precision is the sun's energy output.  Meteorological (weather) services the world round use pyroheliometers, which use a black surface to absorb the sun's energy with a thermopile sensor's output measuring the differential temperature between the black surface and ambient temperature.  The sensor itself is housed in a hemispherical Dewar (vacuum bottle).
As you can guess, there is no end to the uncertanties of this sensor, from the optics of the Dewar and thermal leakage to the changing absorption properties of the "black" body as it is exposed to radiation.

Meteorologists from the world gather each year at the time of the summer solstice on a mountain top, pick a clear day and after a countdown take readings from their "reference" instruments.  These instruments are then used as transfer standards based on the assumption that the sun's output is constant.

While there is a lot of data showing the sun's output variations in the short term, there is no sensor stable enough to read the sun's long term variability.

As we all know, the sun provides the energy feeding our weather.   But the sun's varying output is not a variable in any climate models.  Being unmeasurable, it is assumed to be constant.  Most scientists attribute past climate changes, from ice ages to tropical conditions in the Antarctic to varying solar output.

No doubt, the more we know, the more we realize we don't know.

User Rank
Gravitational model
drdemjanenko   8/11/2014 1:05:12 PM
Since gravity has the ability to escape from a black hole, our model must be incomplete.  Relative to a moving mass nearby a rotating black hole, as the rotation rate gets higher and higher (relative to c), a portion of the black hole (a conical region), should disappear (its relative speed appearing higher than c).  Similarly, it has been observed that the gravitational field "bulges" along the plane perpendicular to its axis of rotation.  The effective gravity should be taking the relative speeds of the masses into account.  The equation for gravitational attraction would probably be :

F = G x (1 + (relative velocity between 1 and 2)/ c) x (mass1 × mass2)/r2

with the caveat that the relative velocity can never be bigger than -c and has implied limits of 2 and 0.  The gravitational event horizon is thus for mass which has been moving ever since the Big Bang into our forever non-visible universe and for mass that accumulates onto black holes that spin at nearly c.



<<   <   Page 5 / 5 Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Are the design challenges the same as with embedded systems, but with a little developer- and IT-skills added in? What do engineers need to know? Rick Merritt talks with two experts about the tools and best options for designing IoT devices in 2016. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.
Like Us on Facebook
Special Video Section
The quality and reliability of Mill-Max's two-piece ...
The quality and reliability of Mill-Max's two-piece ...
LED lighting is an important feature in today’s and future ...
The LT8602 has two high voltage buck regulators with an ...
Silego Technology’s highly versatile Mixed-signal GreenPAK ...
The quality and reliability of Mill-Max's two-piece ...
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...
See the Virtex® UltraScale+™ FPGA with 32.75G backplane ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...
The LTC®2348-18 is an 18-bit, low noise 8-channel ...